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ABSTRACT

Our goal is to decompose whole slide images (WSI) of histology

sections into distinct patches (e.g., viable tumor, necrosis) so that

statistics of distinct histopathology can be linked with the outcome.

Such an analysis requires a large cohort of histology sections that

may originate from different laboratories, which may not use the

same protocol in sample preparation. We have evaluated a method

based on a variation of the restricted Boltzmann machine (RBM) that

learns intrinsic features of the image signature in an unsupervised

fashion. Computed code, from the learned representation, is then

utilized to classify patches from a curated library of images. The

system has been evaluated against a dataset of small image blocks

of 1k-by-1k that have been extracted from glioblastoma multiforme

(GBM) and clear cell kidney carcinoma (KIRC) from the cancer

genome atlas (TCGA) archive. The learned model is then projected

on each whole slide image (e.g., of size 20k-by-20k pixels or larger)

for characterizing and visualizing tumor architecture. In the case of

GBM, each WSI is decomposed into necrotic, transition into necro-

sis, and viable. In the case of the KIRC, each WSI is decomposed

into tumor types, stroma, normal, and others. Evaluation of 1400

and 2500 samples of GBM and KIRC indicates a performance of

84% and 81%, respectively.

Index Terms— Tumor characterization, whole slide imaging,

feature learning, sparse coding.

1. INTRODUCTION

Our goal is to evaluate tumor composition in terms of a multipara-

metric morphometric indices and link them to clinical data. If tis-

sue histology can be characterized in terms of different components

(e.g., stroma, tumor), then nuclear morphometric indices from each

component can be tested against a specific outcome. However, such

an analysis usually needs to be performed in the context of a co-

hort, where histology sections are generated at different labs, or at

the same lab, but at different times with a significant amount of tech-

nical variations.

In this paper, we extend and evaluate automated feature learn-

ing from unlabeled datasets. Features are learned using a generative

model, based on a variation of the restricted Boltzmann machine

(RBM) [1], with added sparsity constraints. It operates in two stages

of feedforward (e.g., encoding) and feedback (e.g., decoding). The

decoding step reconstructs each original patch from an overcomplete

set of basis functions called the dictionary through sparse associa-

tion. A second layer of pooling is added to make the system robust

to translation in the data. Learned features are then trained against

an annotated dataset for classifying a collection of small patches in

each image. This approach is orthogonal to manually designed fea-

ture descriptors, such as SIFT [2] and HOG [3] descriptors, which

Fig. 1. (a) Architecture for restricted Boltzmann machine (RBM),

where connectivity is limited between the input and hidden layer.

There is no connectivity between the nodes in the hidden layer.

(b)Illustration of the 2-layer recognition framework including the

encoder, decoder and pooling.

tend to be complex and time consuming. The tumor signatures are

visualized from hematoxylin and eosin (H&E) stained histology sec-

tions. We suggest that automated feature learning from unlabeled

data is more tolerant to batch effect (e.g., technical variations as-

sociated with sample preparation) and can learn pertinent features

without user intervention. The RBM framework with limited con-

nectivity between input and output is shown in Figure 1(a). Such a

network structure can also be stacked for deep learning. Our overall

recognition framework which includes the auto-encoder and a layer

of max-pooling for feature generation is shown in Figure 1 (b).

The organization of the paper is as follows. Section 2 reviews

prior research. Section 3 outlines the proposed method. Section 4

provides a summary of the experiment data. Section 5 concludes the

paper.

2. REVIEW OF PREVIOUS RESEARCH

Histology sections are typically visualized with H&E stains that la-

bel DNA and protein contents, respectively, in various shades of

color. These sections are generally rich in content since various cell

types, cellular organization, cell state and health, and cellular secre-



tion can be characterized by a trained pathologist with the caveat of

inter- and intra- observer variations [4]. Several reviews for the anal-

ysis and application of H&E sections can be found in [5, 6, 7, 8].

From our perspective, three key concepts have been introduced to

establish the trend and direction of the research community.

The first group of researchers have focused on tumor grading

through either accurate or rough nuclear segmentation [9] followed

by computing cellular organization [10] and classification. In some

cases, tumor grading has been associated with recurrence, progres-

sion, and invasion carcinoma (e.g., breast DCIS), but such associa-

tions is highly dependent on tumor heterogeneity and mixed grading

(e.g., presence of more than one grade). This offers significant chal-

lenges to the pathologists, as mixed grading appears to be present

in 50 percent of patients [11]. A recent study indicates that de-

tailed segmentation and multivariate representation of nuclear fea-

tures from H&E stained sections can predict DCIS recurrence [12]

in patients with more than one nuclear grade. In this study, nuclei

in the H&E stained samples were manually segmented and a mul-

tidimensional representation was computed for differential analysis

between the cohorts. The significance of this particular study is that

it has been repeated with the same quantitative outcome. In other

related studies, image analysis of nuclear features has been found to

provide quantitative information that can contribute to diagnosis and

prognosis values for carcinoma of the breast [13], prostate [14], and

colorectal mucosa [15].

The second group of researchers have focused on patch-based

(e.g., region-based) analysis of tissue sections by engineering fea-

tures and designing classifiers. In these systems, representation

is often based on the distribution of color, texture, or a group of

morphometric features while the classification is based on either

kernel-based classifier, regression tree classifier, or sparse coding

[16, 17, 18, 19]. More recently, some systems have initiated the

use of automatic feature learning [20, 21]. In its simplest form,

automated feature learning can be based on independent component

analysis (ICA). However, learned kernels from ICA are not grouped

and lack invariance properties. In contrast, independent subspace

analysis (ISA) shows that invariant kernels can be learned from the

data through non-linear mapping [20]. Yet, one of the shortcomings

of ISA is that it is strictly feedforward, which means it lacks the

ability to also reconstruct the original data. Reconstruction, through

feedback is an important positive attributes that RBM can offer.

The third group of researchers have suggested utilizing the de-

tection autoimmune system (e.g., lymphocytes) as a prognostic tool

for breast cancer [22]. Lymphocytes are part of the adaptive immune

response, and their presence has been correlated with nodal metasta-

sis and HER2-positive breast cancer, ovarian cancer [23], and GBM.

3. APPROACH

In the next two sections, details of unsupervised feature learning and

classification are presented. The feature learning code was imple-

mented in MATLAB and the performance was evaluated using sup-

port vector classification implemented through LIBSVM [24].

3.1. Unsupervised Feature Learning

Given a set of histology images, the first step is to learn the dic-

tionary from the unlabeled images. A sparse auto-encoder is used

to learn these features in an unsupervised manner. The inputs for

feature learning are a set of vectorized image patches, X , that are

randomly selected from the input images. The objective of the auto-

encoder is to arrive at a representation Z for each input X with a

Fig. 2. Representative set of computed basis function, D, for a) the

KIRC dataset and b) the GBM dataset.

simple feedforward operation on the test sequence without having to

solve the optimization function again, where the representation code

Z is constrained to be sparse. The feedback mechanism computes

the dictionary, D, which minimizes the reconstruction error of the

original signal. Thus, for an input vector of size n forming the in-

put X , the auto-encoder consists of three components: an encoder

W , the dictionary D and a set of codes Z. The overall optimization

function is expressed as:

F (X) = ‖WX − Z‖2 + λ‖Z‖1 + ‖DZ −X‖2, (1)

where X ∈ R
n, Z ∈ R

k, dictionary D ∈ R
n×k and encoder W ∈

R
k×n. The first term represents the feedforward or the encoding, the

second term denotes the sparsity constraint and the last term denotes

the feedback/decoding. λ is a parameter that controls the sparsity

of the solution, i.e., sparsity is increased with higher value of λ.

The parameter λ is varied between 0.01 and 1 in steps of 0.05 and

the optimum value is selected through cross validation to minimizes

F (X). Here, we used λ = 0.3.
The learning protocol involves computing the optimalD,W and

Z that minimizes F (X). The process is iterative by fixing one set of
parameters while optimizing others and vice versa, i.e., iterate over

steps (2) and (3) below:

1. Randomly initialize D and W .

2. Fix D and W and minimize Equation 1 with respect to Z,

where Z for each input vector is estimated via the gradient

descent method.

3. Fix Z and estimateD andW , whereD,W are approximated

through stochastic gradient descent algorithm.

The stochastic gradient descent algorithm approximates the true

gradient of the function by the gradient of a single example or the

sum over a small number of randomly chosen training examples in

each iteration. This approach is used because the size of the training

set is large and a traditional gradient descent can be very computa-

tionally intensive. Examples of computed dictionary elements from

the KIRC and GBM datasets are shown in Figure 2. It can be seen

that the dictionary captures color and texture information in the data

which are difficult to obtain using hand engineered features.



Tissue Type Necrosis Tumor Transition

to necro-

sis

Necrosis 77.6 7.7 14.6

Tumor 0.5 93.3 6

Transition to necrosis 10.9 6.3 82.8

Table 1. Confusion matrix for classifying three different morpho-

metric signatures in GBM.

3.2. Classification

The computed encoder W is then used to train a classifier on com-

ponents of the tissue architecture using a small set of labeled data.

Every image, in the training dataset, is divided into non-overlapping

image patches. The codes for these patches are computed by the

feedforward operation Z = WX .

In order to account for the translational variation in the data, an

additional pooling layer is added to the system. We perform a max-

pooling of the sparse codes over a local neighborhood of adjacent

codes. The pooled codes form the features for training. A support

vector machine classifier is used to model the different tissue types.

We use a multi-class regularized support vector classification with a

regularization parameter 1 and a polynomial kernel of degree 3.

4. DISCUSSION

We have applied the proposed system to two datasets derived from

(i) Glioblastoma Multiforme (GBM), and (ii) kidney clear cell renal

carcinoma (KIRC) from The Cancer Genome Atlas (TCGA) at the

National Institute of Health. Both datasets consist of images that

capture diversities in the batch effect (e.g., technical variations in

sample preparation). Each image is of 1K-by-1K pixels, which is

cropped from a whole slide image (WSI). These whole slide images

are publicly available from the NIH repository.

In GBM, necrosis has been shown to be predictive of outcome;

however, necrosis is a dynamic process. Therefore, we opted to cu-

rate three classes that correspond to necrosis, “transition to necro-

sis” (an intermediate step), and tumor. Such a categorization should

provide a better boundary between these classes. Purely necrotic re-

gions are free of DNA contents, while transition to necrosis regions

have diffused or punctate DNA contents. The dataset contained a

total of 1, 400 images of samples that have been scanned with 20X

objective. For feature learning, the system extracted 50 randomly se-

lected patches of size 25× 25 pixels from each image in the dataset.

These patches were down sampled by a factor of 2 from each image

and were normalized in the range of 0 − 1 in the color space. A set

of 1, 000 bases were then computed for the entire dataset. The num-

ber of basis were chosen to minimize the reconstruction error using

cross-validation, where reconstruction error is a measure of howwell

the computed bases represent the original images. From a total of

12, 000, 8, 000 and 16, 000 patches obtained for necrosis, transition

to necrosis and tumor, we randomly selected 4, 000 patches from

each class for training, and another 4000 patches were used for test-

ing with cross-validation repeated 100 times. The max-pooling was

performed on every patch of size 100×100 pixels, i.e., max-pooling

operates on a 4-by-4 neighboring patches of the learning step. With

this strategy, an overall classification accuracy of 84.3% has been

obtained with the confusion matrix shown in Table 1. Example of

reconstruction of a heterogeneous test image containing transition to

necrosis on the left and tumor on the right using the dictionary de-

Fig. 3. (a) A heterogeneous tissue section with transition to necrosis

on the left and tumor on the right, and (b) its reconstruction after

encoding and decoding

Tissue Type CCC Normal Stromal Granular Others

CCC 89.8 3.6 4.1 1.2 0

Normal 7.5 75.9 7.4 8.5 0.2

Stromal 5.0 4.6 76.2 5.9 8.2

Granular 6.0 9.0 3.8 80.1 0

Others 0 0 0.2 0 99.8

Table 2. Confusion matrix for classifying five different morphomet-

ric signatures in KIRC .

rived from the auto-encoder is shown in Figure 3. From this example

it is evident that necrosis transition is visually distinguishable from

tumor in reconstruction.

In KIRC, tumor type is the best prognosis of outcome, and in

most sections, there is mix grading of clear cell carcinoma (CCC)

and Granular tumors. In addition, the histology is typically com-

plex since it contains components of stroma, blood, and cystic space.

Some histology sections also have regions that correspond to the nor-

mal phenotype. In the case of KIRC, we opted the strategy to label

each image patch as normal, granular tumor type, CCC, stroma, and

others. The dataset contains 2, 500 images of samples that have been

scanned with a 40X objective. Each image was down sampled by

the factor of 4, and the same policy for feature learning and classifi-

cation was followed as before. Here, from a total of 10, 000 patches

for CCC, 16, 000 patches for normal and stromal tissues, and 6, 500
patches for tumor and others, we used 3, 250 patches for training

from each class and the rest for testing. The overall classification

accuracy was at 80.9% with the confusion matrix shown in Table 2.

To test the preliminary efficacy of the system, several whole

slide sections of the size 20, 000 × 20, 000 pixels were selected,

and each 100-by-100 pixel patch were classified against the learned

model with examples shown in Figure 4. Classification has been

consistent with the pathologist evaluation and annotation.

5. CONCLUSION

In this paper, we presented a method for automated feature learning

from unlabeled images for classifying distinct morphometric regions

within a whole slide image (WSI). We suggest that automated feature

learning provides a rich representation when a cohort of WSI has to

be processed in the context of the batch effect. Automated feature

learning is a generative model that reconstructs the original image

from a sparse representation of an auto encoder. The system has been



Fig. 4. Two examples of classification results of a heterogeneous

GBM tissue sections. The left and right images correspond to the

original and classification results, respectively. Color coding is black

(tumor), pink (necrosis), and green (transition to necrosis).

tested on two tumor types from TCGA archive. Proposed approach

will enable identifying morphometric indices that are predictive of

the outcome.
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